If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2u+3u^2-8=0
a = 3; b = 2; c = -8;
Δ = b2-4ac
Δ = 22-4·3·(-8)
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-10}{2*3}=\frac{-12}{6} =-2 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+10}{2*3}=\frac{8}{6} =1+1/3 $
| x+2-3x+4=4x+3-x+2 | | 11v+5v+4v-17=3 | | 2/10+x/100=5/10 | | -9p-15=95 | | 8x–3(8x)2=x | | 13w+5w+w-16w+1=16 | | 1/2(x^2+3x)-77=0 | | 4x-3=(1)/(3)(9x+18)-5 | | -11=x÷19 | | -2y+2-410=24 | | 3x+3-1=17 | | 14w-8w+3w+1=19 | | 2/10+x/100=5/x | | 3x+8-2x=6 | | 360=130+2c | | 6-7v=69 | | 8x-(3x-14)=2x+26 | | u+3=11 | | (6)-v7=-69 | | 25+5/2y-1/2y=3 | | 8-3(2x-3)=(-12)x-1 | | 3x+26=7x+6 | | 20-x=35-2x=15 | | x+7+6x+10+3x+3=180 | | 5/6=k/25 | | 4x+39=7x+9 | | 1/4=b/27 | | 3x/2+4=2x-1 | | 7x-3+2x+5+6x-17=180 | | 4x+23=9x-12 | | -16x^2+15x+4=0 | | h+h3+h4=100 |